

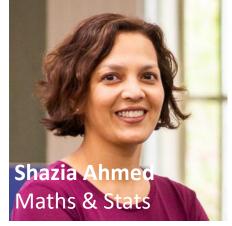
Cross-disciplinary Numbas initiative at the University of Glasgow

NUMBAS

NUMBAS User Meeting Spring 2022

Numbas at Glasgow

- Previous projects (Chemistry, Life Sciences)
- Other existing use (Geospatial, Access)
- Further potential (Maths Support, more questions, other subject areas)
- Project team and Chancellor's Fund
- Recruitment of undergraduate student project assistants
 - Named appointments
 - 3 x 80 hours (~5 hours a week for 4 months)
 - Support from Newcastle

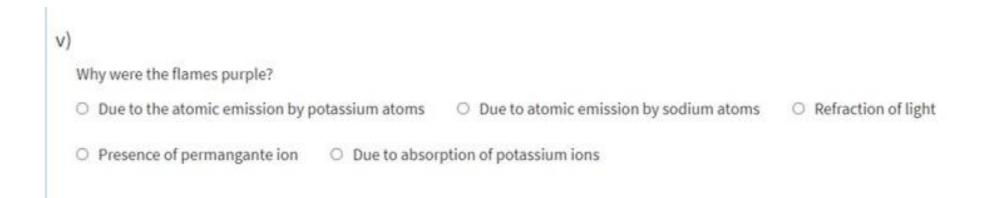

Project Team

Project team existing/development interests

Recap: some Numbas possibilities

Consider strategy/needs carefully, test, evaluate including student feedback

Use	Randomisation
Additional optional student resource	Students can keep practicing areas they find difficult
Formative testing	Allows repeated tests
Low credit summative testing	Allows repeated tests and keep max score.
Summative testing – can be review tests	Numerical answers can be different for each student
Diagnostic testing	Numerical answers can be different for each student


Frances Docherty & Beth Paschke, Chemistry:

- Maths support for chemists
- Online lab reporting
- Practice exercises on lecture material,

Procedure A: Oxidation of Glycerol by Potassium Permanganate

- 1. Weigh out 1.5g of potassium permanganate (See APPENDIX A on weighing), into a white crucible using the balance in the fumehood.
- 2. Make a conical pile of your crystlas in the centre of the crucible and make a small indentation in the top of the pile.
- 3. Using a teat pipette, carefully add SIX DROPS of glycerol (this is about the amount you calculated in the prelab part) into the indentation.
- 4. Remove the glycerol bottle, lower the fume cupboard window and observe and record what happens. Notice the colour of the flames (The reaction may take a little time to commence).
- 5. When the lump of charred material has cooled, (i.e after a couple of minutes) add a few drops of 5M sulfuric acid to it. Record your observations and attempt to relate them to the expected reaction products. (**Do not smell any gasses evolved**).
- 6. Leave the crucible at the back of the fumehood for specialist disposal by technical staff.

he reaction was slow!	to begin wit	th because	~	but once initiated, the	
produced in this reaction	reaction I				
		of a lack of catalyst			
	of waiting for the reactants to mix		Submit part		
		only a small fraction of molecules having the activation energy			

Frances Docherty & Beth Paschke, Chemistry:

Maths support for **Science Fundamentals** course;

- Compulsory course for Life Sciences students if no Higher Chemistry with substantial mathematical component
- Wide range of mathematical backgrounds & abilities
- Feedback requests for additional (practice) support
- **Topics**: Fractions, Percentages, Scientific notation, Unit conversion, Equations of lines, Simultaneous equations, Quadratic equations, Powers and indices, Differentiation, Integration, Trigonometric functions, Logarithms, Exponential functions

Elizabeth Petrie - Geospatial PGT mixed experience maths

- Numbas approach evolved and tested over three years
- Assessment 10% of 20 credit module

- 10 weekly tests (minimal credit, repeat as wish before deadline)
- 2 summative review tests (single timed sitting, most of credit)
- Current project will improve range and standard of questions available

Ruth Douglas, Maths Support & Access

- Additional resources for students from other subject backgrounds requiring extra practice on particular topics
- Supplementing existing graduate numeracy resources
- Access Maths formative tests and practice exercises
- Pre-Access diagnostic test and revision materials for prospective students (Clare Brown, Lifelong Learning)

William Finlay, Adam Smith Business School

Large intake Foundations of Finance course

Very mixed maths ability

Building maths confidence with lower staff involvement

Creating an accessible learning environment

Coordinating a joint project and collegiality

Chancellor's Fund application

• L&T conference

Minimum useful content

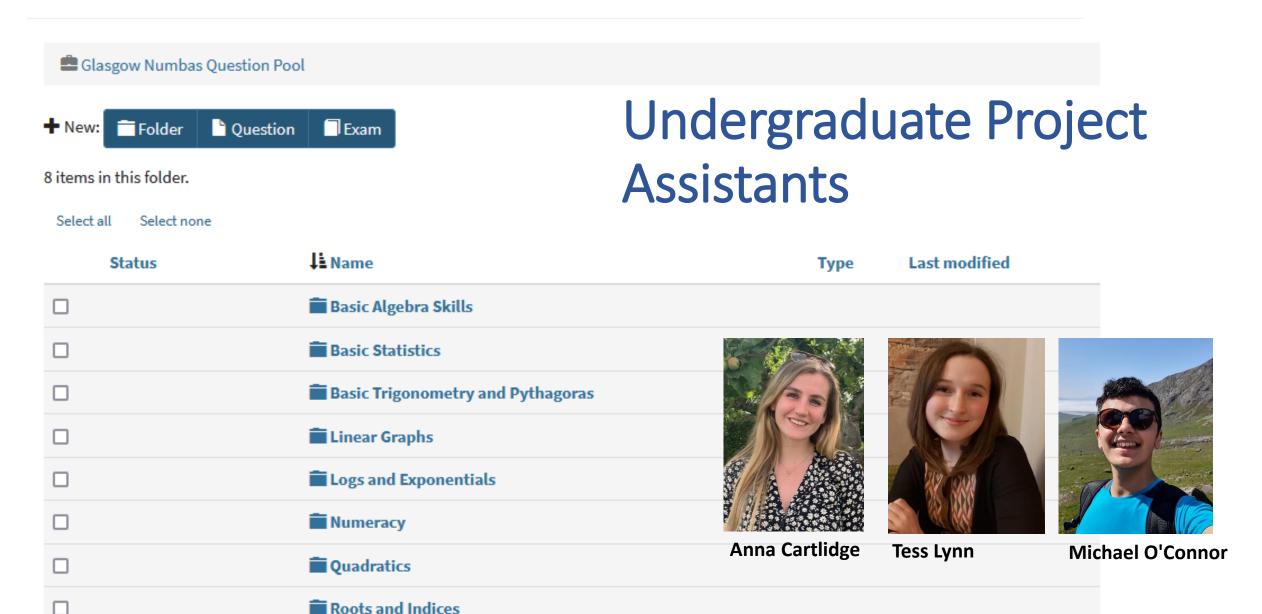
Managing interns

Provisional student work packages

Name	Name	Name
Basic algebra, equation	units, rounding	Differentiation - basic
rearranging – 10-20 q		
Logs and exponentials	Trigonometry – sin, cos, tan	Differentiation - product and
		quotient
Quadratics – completing the	Pythagoras 2D and 3D	Z-tests, Percentage returns
square		
Graphs - linear	Trigonometry – sine rule	Integration – basic, definite,
	cosine rule	indefinite
Graphs - Quadratic	Vectors and polar Coordinates	Integration – area
		under/between curves

Student interns

Recruitment


Training

Collecting material

Creating new material and meeting a standard

Copyright and existing material

Want to be efficient and not recreate the wheel if it exists already

But want to meet licence terms

Want to consider Open Resource library

Question quality

- Advice completed
- Consider hints, adaptive marking
- Single questions
- Tested by another person
- Metadata

Questions?

Contact one of the project team at:

Ruth Douglas Ruth Douglas@glasgow.ac.uk

Elizabeth Petrie Elizabeth.Petrie@glasgow.ac.uk

Niall Barr Niall.Barr@glasgow.ac.uk

William Finlay William.Finlay@glasgow.ac.uk

Shazia Ahmed Shazia.Ahmed@glasgow.ac.uk

Beth Paschke Beth.Paschke@glasgow.ac.uk

Frances Docherty Frances.Docherty@glasgow.ac.uk

Thanks

for

listening!

Clare Brown Clare.Brown.2@glasgow.ac.uk

Appendix - Examples

Ready to use

Ready to use

Ready to use

Ready to use

65 results for "logs".

Show results for

- ☐ Questions
- ☐ Exams

Refine by

- Any status
- O Draft
- Ready to use
- O Should not be used
- O Has some problems
- O Doesn't work
- O Needs to be tested

Equations involving logs

Exam (5 questions) in Martin's workspace by <u>A</u> Martin Jones

Solve equations involving logs and exponential functions, by using inverse operations.

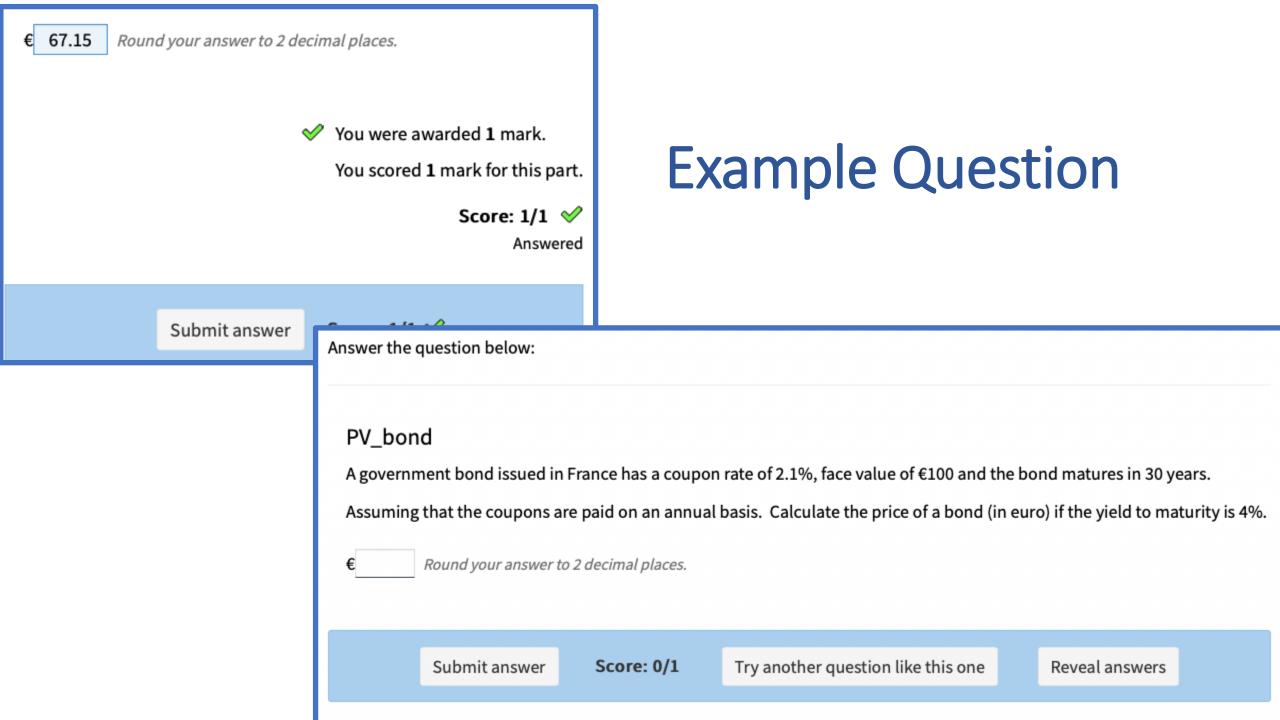
Equations involving logs

Exam (5 questions) in Glasgow Numbas Question Pool by <u>1</u> Tess Lynn and 1 other

Solve equations involving logs and exponential functions, by using inverse operations.

Solving exponential equations using logs

Question in Glasgow Numbas Question Pool by <u>Tess Lynn and 1 other</u>


No description given

Combining use of multiple laws of logarithms into one equation

Question in Glasgow Numbas Question Pool by <u>Tess Lynn and 3 others</u>
Given a sum of logs, all numbers are integers,

 $\log_b(a_1) + \alpha \log_b(a_2) + \beta \log_b(a_3)$ write as $\log_b(a)$ for some fraction a.

Also calculate to 3 decimal places $\log_b(a)$.

Writing the question in NUMBAS:

Write advice

Advice

In order to solve this question, we need to recognize that we are trying to solve the present value of a government bond.

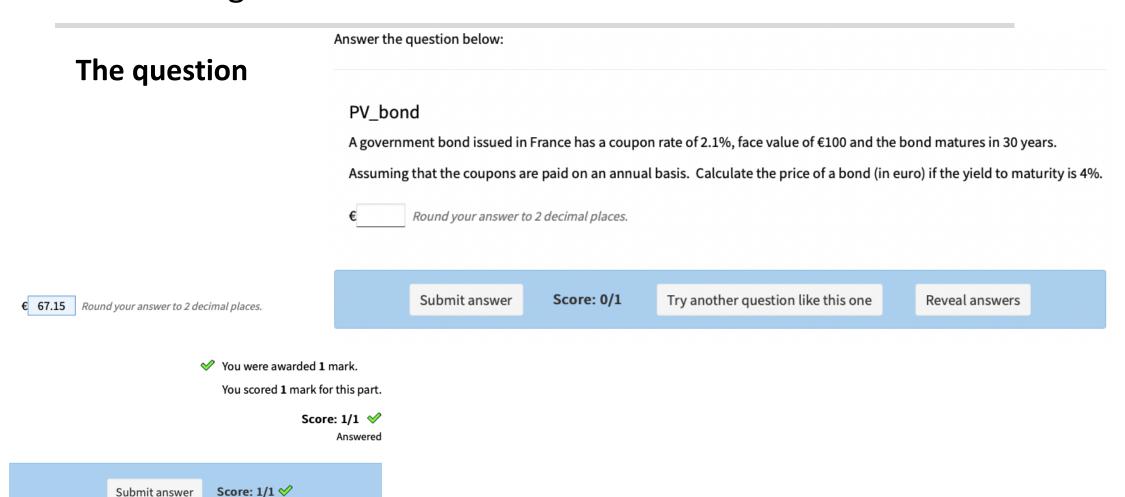
To calculate the price of a bond:

$$PVbond = coupon * \left(\frac{1}{r} - \frac{1}{r(1+r)^n}\right) + \frac{Par}{(1+r)^n}$$

Using the information provided in the question:

The coupon is {currency({coupon_payment},"€","p")}, this is calculated as {coupon}% of the face value of €{face}. The number of periods in this problem is {period_years} and the yield to maturity is {ytm}%.

Therefore to solve the value of this bond from {place}:


$$PVbond = \left\{ \text{coupon_payment} \right\} * \left(\frac{1}{\{\text{ytm_dec}\}} - \frac{1}{\{\text{ytm_dec}\}(1 + \{\text{ytm_dec}\})^{\{\text{period_years}\}}} \right) + \frac{\{\text{face}\}}{1 + \{\text{ytm_dec}\}^{\{\text{period_years}\}}}$$

The present value of the bond = {currency(PV_bond,"€","cents")}

Click to edit

Student facing NUMBAS:

Student facing NUMBAS:

Advice

Advice

In order to solve this question, we need to recognize that we are trying to solve the present value of a government bond.

To calculate the price of a bond:

$$PVbond = coupon * \left(\frac{1}{r} - \frac{1}{r(1+r)^n}\right) + \frac{Par}{(1+r)^n}$$

Using the information provided in the question:

The coupon is €2.10, this is calculated as 2.1% of the face value of €100. The number of periods in this problem is 30 and the yield to maturity is 4%.

Therefore to solve the value of this bond from France:

$$PVbond = 2.1 * (\frac{1}{0.04} - \frac{1}{0.04(1 + 0.04)^{30}}) + \frac{100}{1 + 0.04^{30}}$$

The present value of the bond = €67.15

Student facing NUMBAS:

Infinite number of questions

PV_bond

A government bond issued in Germany has a coupon rate of 1.8%, face value of €100 and the bond matures in 27 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 5.9%.

PV_bond

A government bond issued in France has a coupon rate of 3.4%, face value of €100 and the bond matures in 2 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 13.6%.

PV_bond

A government bond issued in Italy has a coupon rate of 9%, face value of €100 and the bond matures in 30 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 10.2%.

PV_bond

A government bond issued in the Netherlands has a coupon rate of 6.3%, face value of €100 and the bond matures in 36 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 15.6%.

PV_bond

A government bond issued in Italy has a coupon rate of 3.6%, face value of €100 and the bond matures in 5 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 16.8%.

PV_bond

A government bond issued in the Netherlands has a coupon rate of 4.6%, face value of €100 and the bond matures in 8 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 3.4%.

PV_bond

A government bond issued in Italy has a coupon rate of 9.5%, face value of €100 and the bond matures in 26 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 19.3%.

Foundations of FINANCE

Writing advice

In order to solve this question, you need to identify that we are solving for this equation: $FV=PV(1+r)^n$

Therefore to solve for the future value:

We know that the PV is £{num_PV}million, we know that $r = \{num_return*100\}\%$ and we have $\{num_period\}$ periods of compounding. Therefore:

$$(FV = PV(1+r)^n)$$

\(FV = \var{num_PV}(1+\var{num_return})^\var{num_period}\)

 $\(FV = \sqrt{answer} \times {million}\)$

Alternative approach to solving:

You may also solve this question using the financial tables.

The future value factor (FVF) of $\{num_return*100\}\%$ for $\{num_period\}$ periods is: $\{factor_rounded\}$ to 4 decimal places.

$$\label{eq:fv} $$ \PV * FVF(\operatorname{num_return}100) \text{(FV = }\operatorname{num_PV}*\operatorname{factor_rounded}) $$ (FV = \operatorname{num_PV}*\operatorname{factor_rounded}) $$ (FV = \operatorname{num_PV}\times\operatorname{million}) $$$$

Advice

In order to solve this question, you need to identify that we are solving for this equation:

$$FV = PV(1+r)^n$$

Therefore to solve for the future value:

$$FV = PV(1+r)^n$$

We know that the PV is $\mathfrak{E}\{\text{num}_PV\}$ million, we know that $r = \{\text{num}_r\text{eturn*}100\}\%$ and we have $\{\text{num}_p\text{eriod}\}\ \text{periods}\ \text{of compounding}$. Therefore:

$$FV = PV(1+r)^n$$

$$FV = \{\text{num}_{PV}\} (1 + \{\text{num_return}\})^{\{\text{num_period}}\}$$

$$FV = \{answer\}$$
 million

Alternative approach to solving:

You may also solve this question using the financial tables.

The future value factor (FVF) of {num_return*100}% for {num_period} periods is: {factor} or {factor_rounded} to 4 decimal places.

$$FV = PV * FVF(\{\mathsf{num_return} \times 100\} \%, \{\mathsf{num_period}\})$$

$$FV = \{\mathsf{num}_{PV}\} * \{\mathsf{factor_rounded}\}$$

$$FV = \{\mathsf{answer}\} \text{ million}$$

Click to edit