
1/9

Combining LaTeX graphics with JSXGraph in
Numbas

Jim Pettigrew and Don Shearman

Mathematics Education Support Hub, Western Sydney University



2/9

Introduction

In this talk I will demonstrate a workflow that enables
LaTeX‐generated graphics to be ported to Numbas as svg files,
embedded in a JSXGraph object and made interactive using basic
tools in the extension.

A feature of the workflow will be the ‘syncing’ of the LaTeX and
JSXGraph coordinate systems, allowing easy geometric placements
and adjustments to be made in JSXGraph.



3/9

LaTeX graphics engines

The workflow I will demonstrate uses TikZ to generate the graphics.

I have successfully experimented with a workflow using PSTricks,
though this was a little more complicated due to my inability to
simplify the synching of coordinate systems (I ended up using a
vector graphics editor to manually determine all required distances
and dimensions).



4/9

Motivation

Many of those who regularly use LaTeX will have accumulated a
significant number of high‐precision figures that could be useful as
illustrative or instructive tools in Numbas.

By using a dvi‐to‐svg conversion tool, it is possible to faithfully
convert LaTeX‐generated figures to vector graphics files that can be
included as images in Numbas questions.

But this can be taken further: the converted images can be
embedded in JSXGraph objects within Numbas and hence animated
using the dynamic geometric capabilities of this extension.



5/9

Preparation

The workflow uses a dvi‐to‐svg conversion tool and a vector
graphics editor. I use dvisvgm (that ships with the MiKTeX
distribution) and Inkscape respectively.

I use a template LaTeX file for generating the TikZ graphics and
some boilerplate JessieCode for creating the JSXGraph object in
Numbas (links below).

tikz_template.tex
https://drive.google.com/file/d/1smusSKWwP82VyK-H8LQJn-dP__imQ0UK/view?usp=sharing
jessie_code_template.txt
https://drive.google.com/file/d/10MFS4WziIB0zm3beYG5in598RA2Q_rZI/view?usp=sharing
tikz_code_for_clock.txt
https://drive.google.com/file/d/1-p_w1IlST6qBJBVJrFchDg0eeLBu7V1-/view?usp=sharing



6/9

Graphics generation

Compile demo.tex to dvi.

Using a console:

cd C:\NumbasUserMeeting\WorkflowDemo
dvisvgm --no-fonts demo.dvi



7/9

Graphics modification (if needed)

Use Inkscape to modify the svg file (demo.svg) and save the
modified file as ‘Plain SVG (*svg)’.

Do not add elements that breach the bounding rectangle.



8/9

Upload graphics to Numbas and sync

Create a new question in Numbas, load demo.svg as a resource,
include the JSXGraph extension and add a variable named ‘diagram’
for the JSXGraph object.

My example is here.

Copy the JessieCode boilerpate into the value of the diagram
variable.

For the image dimensions, use the demo.output file in the same
directory as demo.tex.

https://numbas.mathcentre.ac.uk/question/120408/convertingto24hourtimefornumbasusermeeting22/embed/?token=ec7eb6d9-b5e0-4dab-850d-4da37e07ae41


9/9

Add JSXGraph geometry

Check axis and grid alignment before switching these elements off.

Add desired geometry using variable inputs.

Insert variable inputs (to the left of the ‘safe’ command):
‘‘hourHandCoordsX = {hourHandCoords[0]};hourHandCoordsY = {hourHandCoords[1]};
minuteHandCoordsX = {minuteHandCoords[0]};minuteHandCoordsY = {minuteHandCoords[1]};”+

Add geometry:
segment([0,0],[hourHandCoordsX,hourHandCoordsY])
<<strokeColor: ’black’, highlight: false, lastArrow: true, strokeWidth: 3.5, fixed: true>>;
segment([0,0],[minuteHandCoordsX,minuteHandCoordsY])
<<strokeColor: ’black’, highlight: false, lastArrow: true, strokeWidth: 3.5, fixed: true>>;


